
Supporting Text

1. Parameter Dependence of Cluster Model.

The cluster model shows persistent metastability only in a certain parameter regime.
Outside this parameter regime, clusters might either rapidly decay, or rapidly expand to
take over the entire lattice. We explored the appropriate parameter regime for metastability;
results are shown in Fig. 7. In order to create this figure, we defined as metastable simulations
that did not shift up or down to a new metastable state decay within the first 200 time
units. We varied two parameters: the repulsion constant (L1) and the slope of the insertion
probability function (β). These results are based on simulations with initial cluster size of
8x8; results would be qualitatively different for different initial sizes. We find that at higher
β (low noise) the metastable regime has a wider range of allowed values of L1.

2. The off-rate model: Assumptions and consequences

In the cluster model proposed in this paper, the on rate (insertion rate) of receptors de-
pends on the number of neighbors a receptor has while the removal rate is constant, producing
an asymmetry between the insertion and removal processes. Another option is to have a con-
stant on-rate and a neighbor-dependent off rate. This might seem more intuitive to some, if
we perceive the cluster as an aggregate. We claim that although such a model might extend
the lifetime of clusters, it does so simply by extending the average dwell-time of receptors in
the cluster and therefore does not address the question of how synaptic efficacies can be much
more stable than the proteins they are made of.

To demonstrate this, we define mathematically an alternative off-rate model and simulate
it. We assume a fixed insertion probability of the form:

P ex
orm(i, j) = (1− Sij)µon∆t,

where µon is the on-rate parameter, and the orm subscript denotes the off-rate model. The
removal probability was assumed to have the following neighbor dependent form:

P in
orm(i, j) =

2µoff exp(−βh1(i, j))

1 + exp(−βh1(i, j))
Si,j ·∆t,

where µoff is the off-rate parameter, h1 is the field as defined in Eq. 1 of the main text, and
β is the slope of this monotonically decreasing function. For this monotonically decreasing
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function, as the number of neighbors increases, the off rate decreases. Note that the field
h1 depends of the parameter L1. In all our simulations we used L1 = 1.5, µoff = 1. The
parameters µon and β are varied from simulation to simulation. A large µon induces strong
background fluctuations in the number of receptors but does not contribute to preserving the
initial cluster; we typically chose µon << µoff . Movie 7 shows an example of sn off-rate model
with β = 6, µon = 0.01 and an initial size of 7x7 receptors. If µon is too large, clusters would
expand rather then decay.

From simulations of the off-rate model, we can see that the clusters can have a lifetime
larger than 1, which is the dwell time of an isolated receptor. As we increase β the lifetime
of the clusters will increase. However, a receptor with neighbors has a longer dwell time
than an isolated receptor. The average dwell time of a receptor at point i, j on the lattice
is: ∆t/P in

orm(i, j) and will therefore change in time as the field changes. However, this can
easily be calculated for a fixed number of neighbors. In Fig. 8 we plot the mean lifetime of
clusters (time to get to 1/e of initial size) as a function of β and compare that to the lifetime
of receptors with 2 (red) or 3 (blue) neighbors. Although the lifetime of the clusters is larger
than the dwell time of receptors with 2 neighbors (corner receptors), it increased at about
the same rate, and at a much lower rate than the dwell time of receptors with 3 neighbors
(edge receptors). Therefore, we conclude that the off-rate model does not produce efficacies
that have longer lifetimes than the receptors they are made of, it merely increases the dwell
times of receptors within the cluster.

3. Formal Similarities and Differences Between the Cluster Model
and the Ising Spin Model.

Eqs. 1, 8 and 9 in the main text seem to be nearly identical to equations defining
the dynamics in an Ising spin model. In an Ising spin model the spins take the values 1
and -1 rather than 0 and 1 as defined here, but a simple variable transformation can relate
the two. However, the model defined here differs from the standard formulation of an Ising
spin model, and more generally is not formally analogous to models of magnetic systems in
statistical physics (1). As in the Ising model the transition from an unoccupied state (Sij = 0)
to an occupied state (Sij = 0) depends on the field (hk(ij)) and on a parameter β which can be
thought of as an inverse temperature. However, the opposite transition from an occupied to
an unoccupied state proceeds at a constant rate that is independent of the field, the number of
neighbors or β. For such asymmetric transitions, no energy function (or Lyaponov function)
has been defined, and detailed balance is not preserved. Moreover, the “inverse temperature
” parameters (β)can be changed without changing the removal rate parameter (µ), so the
insertion and removal processes can be perceived as having two different “temperatures”.
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Could the simpler Ising spin model be used for preserving synapse specific efficacies?
Below the critical temperature, a ferromagnetic Ising spin model has one well defined order
parameter, which in this context could be related to the synaptic efficacy. Therefore, the
equilibrium states of an Ising model could not be a good model system for preserving different
synaptic efficacies at each synapse. Different synaptic efficacies could be preserved by setting
individually the parameter β at each synapse. What this means mechanistically is that
different on and off rates must be preserved individually at each synapse, for as long as the
synaptic efficacy is to be preserved. Such a need to precisely control the molecular dynamic
parameters at each synapse does not seem biologically plausible, and is exactly what this
model tries to avoid. Very close to the critical ’temperature’ 1/βc many different values of the
order parameter can be preserved for a long period of time. However, this would require fine
tuning of β and constantly keeping the synapse at the critical parameter. Although I could
not find a parameter regime in which the standard Ising spin model generates long lasting
metastable sates, I have not proven here that this cannot be done.

Fig. 7 shows a “phase diagram” in the space of L1 and β of the metastable states of the
cluster model. If we ran these simulations much longer, all the simulations would converge
to one of two possible stable states. The stable (equilibrium) states of this model are either
completely empty (decay) or completely occupied (expansion) at any value of L1 and β. In
both stable states, there is a small but finite probability that a single site in the lattice will
flip to the opposite state. However, the probability that more than two neighboring sites will
be flipped in the same time is very small and has never been observed in our simulations.
Moreover, small clusters (eg. three) have a very short life span. Of course the probability of
randomly creating clusters from an unoccupied state, or of removing a cluster of receptors from
a fully occupied state can be altered if we change our parameters such as β and µ. However,
our simulations were carried out with parameters that support the metastable states, and for
these parameters, a random creation of a metastable cluster from an unoccupied state, and
definitely of randomly switching from an unoccupied to a fully occupied state, is in practical
terms zero.
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4. Mathematical Appendix: Fluctuations in an Equilibrium Model.

I assume a very simple equilibrium model in which there are two populations of receptors,
a synaptic population Rs and a non synaptic population Ri, such that Rs + Ri = RT . The
kinetic diagram describing this is

Ri

K1

−→
←−
K−1

Rs, (1)

where K1 and K−1 are the forward and backward coefficients. The kinetic coefficients of
the total number of receptors RT might change as a function of synaptic plasticity. Here we
will analyze these dynamics, assuming that kinetic coefficients and RT remain constant. The
dynamics of Rs can be characterized by the following equation:

dRs

dt
= K1RT − (K1 + K−1)Rs. (2)

This equation has the explicit solution:

Rs(t) = (Rs(0)−R∗
s)e

−t/τs + R∗
s (3)

where R∗
s = K1

K1+K−1
RT and τs = (K1 + K−1)

−1, and Rs(0) is the initial condition. Since the
different receptors are assumed independent, the probability of a given receptor i being in the
synaptic state at time t, denoted as Pi(t) is

Pi(t) = (Ps(0)− P ∗
s )e−t/τs + P ∗

s (4)

where P ∗
s = K1

K1+K−1
, and Ps(0) = Rs(0)/RT . Using these dynamics we can also calculate

the fluctuations of the number of synaptic receptors from their equilibrium value: The number
of synaptic receptors Rs is: Rs(t) =

∑RT
i=1 ξi(t) where ξi(t) is 1 if receptors i is in the synaptic

state and 0 otherwise. I now proceed to calculate a cross correlation function Q(τ) where
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Q(τ) =
1

2

〈
(Rs(t + τ)−Rs(t))

2
〉

=
1

2

〈


RT∑

i=1

ξi(t + τ)−
RT∑

i=1

ξi(t)




2〉
, (5)

where the average, denoted by < >, is taken with respect to the probability of being in
a synaptic state, as shown in Eq. 4. I will carry out these calculations in the t → ∞ limit,
where the probabilities become independent of the initial conditions. I obtain:

Q(τ) = RT

(
< (ξi)

2 > − < ξi(t + τ)ξi(t) >
)
. (6)

The subscript i can be omitted due to the independence of the different receptors, and
this was obtained in the t →∞ limit.

The quantity < ξ2
i > is equivalent to Ps(t) → P ∗

s , the probability that ξi = 1, at time t.
The other term can be calculated by observing that: < ξi(t)ξi(t+τ) >= P (ξi(t) = 1, ξi(t + τ) = 1) =
P (ξi(t + τ) = 1|ξi(t) = 1) · P (ξi(t) = 1) and therefore, using Eq. 4 I obtain

< ξi(t)ξi(t + τ) >= P ∗
s

[
(1− P ∗

s )e−τ/τs + P ∗
s

]
. (7)

Therefore,

Q(τ) = RT P ∗
s (1− P ∗

s )(1− e−τ/τs) (8)

in the limit

Q(τ →∞) = RT P ∗
s (1− P ∗

s ). (9)
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Using the equilibrium value of R∗
s = Rs(t →∞) = RT P ∗

s we obtain

F (τ) =
Q(τ)

< R∗
s >

= (1− P ∗
s )(1− e−τ/τs). (10)

This statistical measure is independent of the total number of receptors RT , is bounded
above by 1, and monotonically decreases as a function of P ∗

s .

In the limit τ →∞ this converges to

F (τ →∞) =
Q(τ)

< R∗
s >

= (1− P ∗
s ). (11)

We can also calculate directly the Fano factor (F ), which is the variance over the mean.
Thus, at steady state,

F =
σ2

µ
=

< R2
s > − < Rs >2

< Rs >
= 1− P ∗

s . (12)

Therefore F (τ →∞) = F , where F is the Fano factor calculated by ensemble averages over
many instances of the same process, at steady state.

6



1. Plischke, M. & Bergersen B. (1994) Equilibrium Statistical Physics (World Scientific,
Teaneck, NJ)

7


